<!--your preparation HTML code goes here-->
/*your preparation JavaScript code goes here
To execute async code during the script preparation, wrap it as function globalMeasureThatScriptPrepareFunction, example:*/
async function globalMeasureThatScriptPrepareFunction() {
// This function is optional, feel free to remove it.
// await someThing();
}
/*When writing async/deferred tests, use `deferred.resolve()` to mark test as done*/
function numberToBigInt(num) {
const str = num.toString();
const decimalIndex = str.indexOf('.');
const scale = decimalIndex === -1 ? 0 : str.length - decimalIndex - 1;
const factor = Math.pow(10, scale);
const scaledValue = Math.round(Math.abs(num) * factor);
return {
value: BigInt(scaledValue),
exp: -scale
};
}
numberToBigInt(1230.1234);
function numberToBigInt(num) {
let intPart = Math.trunc(num);
let fracPart = Math.abs(num - intPart);
let scale = 0;
while (fracPart !== 0 && scale < 20) {
fracPart *= 10;
intPart = intPart * 10 + Math.trunc(fracPart);
fracPart = fracPart - Math.trunc(fracPart);
scale++;
}
return {
value: BigInt(Math.round(intPart)),
exp: -scale
};
}
numberToBigInt(1230.1234);
function numberToBigInt(num) {
const buffer = new ArrayBuffer(8);
const view = new DataView(buffer);
view.setFloat64(0, num);
const sign = view.getUint8(0) >> 7;
const exponent = ((view.getUint8(0) & 0x7F) << 4) | (view.getUint8(1) >> 4);
const mantissa = BigInt(view.getUint32(4)) |
(BigInt(view.getUint16(2) & 0x0FFF) << 32n);
const bias = 1023;
const scale = exponent - bias - 52;
const value = mantissa | (1n << 52n);
return {
value: sign ? -value : value,
exp: scale
};
}
numberToBigInt(1230.1234);
function numberToBigInt(num) {
const PRECISION = 15; // Максимальная точность IEEE 754
const scale = BigInt(10 ** PRECISION);
const scaledValue = BigInt(Math.round(num * Number(scale)));
// Оптимизация: убираем лишние нули в конце
let value = scaledValue;
let exp = -PRECISION;
while (value !== 0n && value % 10n === 0n) {
value /= 10n;
exp++;
}
return { value, exp };
}
numberToBigInt(1230.1234);
function numberToBigInt(num) {
// Быстрая проверка на целое число через битовые операции
if ((num | 0) === num) {
return {
value: BigInt(num),
exp: 0
};
}
// Для дробных - используем масштабирование
const scale = 1000000n; // 10^6 для достаточной точности
const scaledValue = BigInt(Math.round(num * 1000000));
// Оптимизация хвостовых нулей
let value = scaledValue;
let exp = -6;
while (value % 10n === 0n) {
value /= 10n;
exp++;
}
return { value, exp };
}
numberToBigInt(1230.1234);
function numberToBigInt(num) {
// Кэш степеней 10 для оптимизации
const POWERS = [1, 10, 100, 1000, 10000, 100000, 1000000];
// Определяем количество знаков после запятой
const magnitude = Math.abs(num);
let scale = 0;
if (magnitude !== Math.floor(magnitude)) {
const fraction = magnitude - Math.floor(magnitude);
scale = Math.min(6, -Math.floor(Math.log10(fraction)));
}
const scaledValue = Math.round(num * POWERS[scale]);
return {
value: BigInt(scaledValue),
exp: -scale
};
}
numberToBigInt(1230.1234);
--enable-precise-memory-info
flag.
Test case name | Result |
---|---|
bigint | |
parts | |
double | |
Прямое масштабирование с фиксированной точностью: | |
Битовые операции (самый быстрый для целых чисел с автоматическим переходом на масштабирование): | |
Комбинированный подход с кэшированием степеней: |
Test name | Executions per second |
---|---|
bigint | 6354857.0 Ops/sec |
parts | 7351464.0 Ops/sec |
double | 1700735.8 Ops/sec |
Прямое масштабирование с фиксированной точностью: | 2922840.0 Ops/sec |
Битовые операции (самый быстрый для целых чисел с автоматическим переходом на масштабирование): | 9470969.0 Ops/sec |
Комбинированный подход с кэшированием степеней: | 20886314.0 Ops/sec |
The provided benchmark examines various approaches to converting a floating-point number to a BigInt representation in JavaScript. In all the test cases, the function numberToBigInt(num)
is designed to handle the conversion, but each test employs a different method for achieving the desired result. Below is an analysis of the approaches tested, their pros and cons, notable libraries, and considerations relevant to software engineers.
BigInt Representation with String Manipulation
function numberToBigInt(num) {
const str = num.toString();
const decimalIndex = str.indexOf('.');
const scale = decimalIndex === -1 ? 0 : str.length - decimalIndex - 1;
const factor = Math.pow(10, scale);
const scaledValue = Math.round(Math.abs(num) * factor);
return {
value: BigInt(scaledValue),
exp: -scale
};
}
Pros:
Cons:
Integer and Fractional Part Calculation
function numberToBigInt(num) {
let intPart = Math.trunc(num);
let fracPart = Math.abs(num - intPart);
let scale = 0;
while (fracPart !== 0 && scale < 20) {
fracPart *= 10;
intPart = intPart * 10 + Math.trunc(fracPart);
fracPart = fracPart - Math.trunc(fracPart);
scale++;
}
return {
value: BigInt(Math.round(intPart)),
exp: -scale
};
}
Pros:
Cons:
DataView for IEEE 754 Binary Representation
function numberToBigInt(num) {
const buffer = new ArrayBuffer(8);
const view = new DataView(buffer);
view.setFloat64(0, num);
const sign = view.getUint8(0) >> 7;
const exponent = ((view.getUint8(0) & 0x7F) << 4) | (view.getUint8(1) >> 4);
const mantissa = BigInt(view.getUint32(4)) |
(BigInt(view.getUint16(2) & 0x0FFF) << 32n);
const bias = 1023;
const scale = exponent - bias - 52;
const value = mantissa | (1n << 52n);
return {
value: sign ? -value : value,
exp: scale
};
}
Pros:
Cons:
Fixed-Precision Scaling
function numberToBigInt(num) {
const PRECISION = 15;
const scale = BigInt(10 ** PRECISION);
const scaledValue = BigInt(Math.round(num * Number(scale)));
let value = scaledValue;
let exp = -PRECISION;
while (value !== 0n && value % 10n === 0n) {
value /= 10n;
exp++;
}
return { value, exp };
}
Pros:
Cons:
Bitwise Operations for Integers
function numberToBigInt(num) {
if ((num | 0) === num) {
return {
value: BigInt(num),
exp: 0
};
}
const scale = 1000000n;
const scaledValue = BigInt(Math.round(num * 1000000));
let value = scaledValue;
let exp = -6;
while (value % 10n === 0n) {
value /= 10n;
exp++;
}
return { value, exp };
}
Pros:
Cons:
Caching Powers of 10 for Optimization
function numberToBigInt(num) {
const POWERS = [1, 10, 100, 1000, 10000, 100000, 1000000];
const magnitude = Math.abs(num);
let scale = 0;
if (magnitude !== Math.floor(magnitude)) {
const fraction = magnitude - Math.floor(magnitude);
scale = Math.min(6, -Math.floor(Math.log10(fraction)));
}
const scaledValue = Math.round(num * POWERS[scale]);
return {
value: BigInt(scaledValue),
exp: -scale
};
}
Pros:
Cons:
The benchmark results show that different approaches perform quite differently. Here are a few notable insights:
When choosing from these methods, consider the expected range of input values and performance requirements. For high-frequency operations involving many conversions, lean towards faster approaches (like caching). For accuracy and flexibility, the string manipulation might be preferable, while the DataView technique may serve when low-level control over the binary representation is important.
In summary, selecting an appropriate method depends on a trade-off between execution speed, code complexity, and the accuracy of the representation needed. Alternatives such as using existing libraries for numerical computations (if applicable) can also provide optimized functions to handle such conversions without developer overhead.