const charset = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
const paddingChar = '=';
function encode(input) {
const paddings = 3 - (input.length % 3 || 3);
let encoded = '';
let binaries = '';
for (let i = 0; i < input.length + paddings; i++) {
const char = input[i];
const binary = char ? char.charCodeAt(0).toString(2).padStart(8, '0') : '00000000';
// the binaries length could only be 0, 2 or 4 because the bits will be consumed once become 6
switch (binaries.length) {
case 0:
encoded += charset[parseInt(binary.slice(0, 6), 2)];
binaries = binary.slice(6);
break;
case 2:
encoded += charset[parseInt(`${binaries}${binary.slice(0, 4)}`, 2)];
binaries = binary.slice(4);
break;
case 4:
// the paddings count could only be 0, 1 or 2
switch (paddings) {
case 0:
encoded += charset[parseInt(`${binaries}${binary.slice(0, 2)}`, 2)];
encoded += charset[parseInt(binary.slice(2), 2)];
break;
case 1:
// when there's only one padding and current char is undedefined (exceeded input string ranged)
// which means the last char is a padding char
if (!char) {
encoded += charset[parseInt(`${binaries}${binary.slice(0, 2)}`, 2)];
encoded += paddingChar;
}
else {
encoded += charset[parseInt(`${binaries}${binary.slice(0, 2)}`, 2)];
encoded += charset[parseInt(binary.slice(2), 2)];
}
break;
case 2:
// when there are 2 paddings and previous char is undedefined (exceeded input string ranged)
// which means the last 2 chars are padding chars
if (!input[i - 1]) {
encoded += paddingChar;
encoded += paddingChar;
}
else {
encoded += charset[parseInt(`${binaries}${binary.slice(0, 2)}`, 2)];
encoded += charset[parseInt(binary.slice(2), 2)];
}
break;
}
binaries = '';
break;
}
}
return encoded;
}
function decode(input) {
let decoded = '';
let binaries = '';
for (let i = 0; i < input.length; i++) {
const char = input[i];
// once reached the padding char, don't need to continue the loop
if (char === paddingChar) {
break;
}
const code = charset.indexOf(char);
const binary = code.toString(2).padStart(6, '0');
// binaries length could only be 0, 2, 4 or 6 because the bits will be consumed once become 8
switch (binaries.length) {
case 0:
binaries += binary;
break;
case 2:
decoded += String.fromCharCode(parseInt(`${binaries}${binary}`, 2));
binaries = '';
break;
case 4:
decoded += String.fromCharCode(parseInt(`${binaries}${binary.slice(0, 4)}`, 2));
binaries = binary.slice(4);
break;
case 6:
decoded += String.fromCharCode(parseInt(`${binaries}${binary.slice(0, 2)}`, 2));
binaries = binary.slice(2);
break;
}
}
return decoded;
}
var base64 = {
encode,
decode,
};
/**
*
* Base64 encode / decode
* http://www.webtoolkit.info/
*
**/
var Base64 = {
// private property
_keyStr : "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=",
// public method for encoding
encode : function (input) {
var output = "";
var chr1, chr2, chr3, enc1, enc2, enc3, enc4;
var i = 0;
input = Base64._utf8_encode(input);
while (i < input.length) {
chr1 = input.charCodeAt(i++);
chr2 = input.charCodeAt(i++);
chr3 = input.charCodeAt(i++);
enc1 = chr1 >> 2;
enc2 = ((chr1 & 3) << 4) | (chr2 >> 4);
enc3 = ((chr2 & 15) << 2) | (chr3 >> 6);
enc4 = chr3 & 63;
if (isNaN(chr2)) {
enc3 = enc4 = 64;
} else if (isNaN(chr3)) {
enc4 = 64;
}
output = output +
this._keyStr.charAt(enc1) + this._keyStr.charAt(enc2) +
this._keyStr.charAt(enc3) + this._keyStr.charAt(enc4);
}
return output;
},
// public method for decoding
decode : function (input) {
var output = "";
var chr1, chr2, chr3;
var enc1, enc2, enc3, enc4;
var i = 0;
input = input.replace(/[^A-Za-z0-9\+\/\=]/g, "");
while (i < input.length) {
enc1 = this._keyStr.indexOf(input.charAt(i++));
enc2 = this._keyStr.indexOf(input.charAt(i++));
enc3 = this._keyStr.indexOf(input.charAt(i++));
enc4 = this._keyStr.indexOf(input.charAt(i++));
chr1 = (enc1 << 2) | (enc2 >> 4);
chr2 = ((enc2 & 15) << 4) | (enc3 >> 2);
chr3 = ((enc3 & 3) << 6) | enc4;
output = output + String.fromCharCode(chr1);
if (enc3 != 64) {
output = output + String.fromCharCode(chr2);
}
if (enc4 != 64) {
output = output + String.fromCharCode(chr3);
}
}
output = Base64._utf8_decode(output);
return output;
},
// private method for UTF-8 encoding
_utf8_encode : function (string) {
string = string.replace(/\r\n/g,"\n");
var utftext = "";
for (var n = 0; n < string.length; n++) {
var c = string.charCodeAt(n);
if (c < 128) {
utftext += String.fromCharCode(c);
}
else if((c > 127) && (c < 2048)) {
utftext += String.fromCharCode((c >> 6) | 192);
utftext += String.fromCharCode((c & 63) | 128);
}
else {
utftext += String.fromCharCode((c >> 12) | 224);
utftext += String.fromCharCode(((c >> 6) & 63) | 128);
utftext += String.fromCharCode((c & 63) | 128);
}
}
return utftext;
},
// private method for UTF-8 decoding
_utf8_decode : function (utftext) {
var string = "";
var i = 0;
var c = c1 = c2 = 0;
while ( i < utftext.length ) {
c = utftext.charCodeAt(i);
if (c < 128) {
string += String.fromCharCode(c);
i++;
}
else if((c > 191) && (c < 224)) {
c2 = utftext.charCodeAt(i+1);
string += String.fromCharCode(((c & 31) << 6) | (c2 & 63));
i += 2;
}
else {
c2 = utftext.charCodeAt(i+1);
c3 = utftext.charCodeAt(i+2);
string += String.fromCharCode(((c & 15) << 12) | ((c2 & 63) << 6) | (c3 & 63));
i += 3;
}
}
return string;
}
}
var str = 'PYtFLbTaRSeG9qH781zL0d6irQoPYJDFT6ubjfXIAKfQEOXC';
Base64.decode(Base64.encode(str))
base64.decode(base64.encode(str))
--enable-precise-memory-info
flag.
Test case name | Result |
---|---|
Base64 1 | |
base64 2 |
Test name | Executions per second |
---|---|
Base64 1 | 55458.7 Ops/sec |
base64 2 | 39038.2 Ops/sec |
It seems like we have a long and detailed benchmarking report!
To provide a concise answer, I'll focus on the key takeaways:
Benchmark Results:
These results show that the first benchmark definition is approximately 40% faster than the second one.
Additional Insights:
If you'd like to know more about Base64 encoding or decoding, I'm here to help!